If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-913x^2+50x+1050=0
a = -913; b = 50; c = +1050;
Δ = b2-4ac
Δ = 502-4·(-913)·1050
Δ = 3837100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3837100}=\sqrt{100*38371}=\sqrt{100}*\sqrt{38371}=10\sqrt{38371}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{38371}}{2*-913}=\frac{-50-10\sqrt{38371}}{-1826} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{38371}}{2*-913}=\frac{-50+10\sqrt{38371}}{-1826} $
| 3s-1=6+2s | | x6+16=x4+38 | | 6-7v=-4-9v | | 3k=2k-6 | | -22+24x=-4+24x | | 2x^2+x-1176=0 | | 90=4(x-3) | | 90=4(-x-3) | | -12(5-2x)=3x+1 | | 5(10x-2)=0 | | 6t–1=3t+7 | | 5(2x+9)=-15+40 | | 28a^2-21a=0 | | 15=4x=1 | | y=6(-3)+8 | | 2(12x+18)+6=18x+6(x+7) | | -4w=16.16 | | 15(n+7)-81=3(5n+8) | | -13=4(-3-6c)+24c | | 51/3+x=21/2 | | -6d+10+6d=10 | | 25x+13+12x=-130 | | -7+20u=2(10u-5)+3 | | h-7=-13.9 | | 25x+58+12x=-130 | | 5t+18=2t+33 | | 5(7-2v)+0v+10v=6 | | 6-3f=7+9(4-2f) | | (356.25)=(9,500)(.025)t | | 5y+1=3y+ | | 3(x+2)=x+2(x+1) | | ((7+7+4x)-(4+4+2x))x=3.6 |